

Supernova Acceleration Probe (SNAP) Stray Light Overview

15 March 2005

Michael Sholl

Overview

- SNAP Telescope noise floor is in-field Zodiacal radiation
- Goal of stray light design: stray-light << Zodi
- In dark Ecliptic polar survey regions, this is ~23rd magnitude per square arcsec
- In L2 halo orbit, Earth and Moon occasionally illuminate interior of stray light baffle
- Earth: maximum equivalent magnitude: 6 (ref. Jelinsky scattering sources) or 4.4e8 ph/s/m²
- Moon: maximum equivalent magnitude: 11 (4.4e6 ph/s/m²)
- Starlight is roughly of the same order as Zodiacal radiation
- Excursions into lower Ecliptic latitudes increases Zodiacal radiation dramatically (all-sky survey)

Current Baseline

SNAP baseline

Zodiacal radiation at focal plane

- HgCdTe pixels (infrared) are 18μm (linear)
- CCD pixels are 10.5µm (linear)
- Quantum efficiency of silicon and HgCdTe not considered (effects signal and noise equivalently)

		CCD (10.5µm pixels)					HgCdTe (18µm pixels)			
Filter		0	1	2	3	4	5	6	7	8
λ central	nm	470	541	622	715	822	945	1087	1250	1438
λ low	nm	390	449	516	593	682	784	902	1037	1193
λ high	nm	550	633	727	836	962	1106	1272	1463	1682
Bandwidth	nm	160	184	212	243	280	322	370	426	489
Δλ 65% scaled	nm	104	120	138	158	182	209	241	277	318
		Zodiacal Light (photons/s) thru filters, on detector face (QE not considered)								
		0.127	0.168	0.218	0.247	0.273	0.293	0.898	0.902	0.871
		Irradiance of zero magnitude star in filter band (photons/m2/s/μm)								
		1.3E+11	1.0E+11	8.0E+10	6.0E+10	5.0E+10	3.3E+10	2.8E+10	2.0E+10	1.5E+10

Strategy for stray light design

- Eliminate first-order stray light paths
 - Identify illuminated and visible surfaces
 - Per. BRO recommendations: move or block
- Cold (140K) stop extends from focal plane to internal image of telescope pupil
 - Eliminates majority of thermal load from room-temperature optics
 - As will be shown, emission from mirrors is main source, but within requirements
- Cassegrain baffle has cutouts for detectors (remainder of focal plane is dark)
- Dust is the main first-order straylight path by which external stray light enters TMA65
 - Goal: Level 300 surfaces
 - Try to ensure design has margin with Level 500 surfaces
- Baffles
 - Sun blocked by at least 2 edges
 - Use durable coatings where possible
 - Anodized surfaces
 - Aeroglaze paint
 - Avoid exotic, fragile coatings
 - Non-contact labyrinths on closeouts
- Analysis techniques
 - Back of envelope, order of magnitude analysis
 - Non-sequential raytrace (ASAP)

Optical Design

- TMA Design by M.
 Lampton
- Requirements in 00008-MW02.doc
- Internal field stop (Cassegrain focus) and iris
- Outer pupil defined by vane near PM
- Inner pupil defined by Secondary Baffle
- FOV cone ±0.745°

Illuminated and Critical Surfaces

Illuminated surfaces (upper) and critical surfaces (lower). Items in red are found in both lists, and are therefore first order stray light paths

Detector Virtual Image

- Reverse raytrace random rays from focal plane
- Trace to SM
- Reflect direction of rays
- Find minimum focus size of resulting spot
- This is the Detector Virtual Image (DVI)
- Stray light which intercepts the SM only reaches detector if it is directed toward DVI
- Greatly reduces computational burden

Inner Baffle (Primary Baffle)

- Designed to reduce first-order stray light paths
- Outer surface is illuminated by direct and reflected, out of field light
- Outer surface made invisible to DVI by angling outward (lower figure)
- Inner vanes designed to reduce specular bounces
- Coating: Specular Black such as Aeroglaze Z302

Coatings

- Filters are transmissive to ~1.8 μ m; coating BRDFs should be quantitized from 0.3 μ m to 1.8 μ m.
- State of art in coatings is likely to evolve over next few years
- General findings of stray light analysis and literature search:
 - Durable coatings (anodized aluminum or Aeroglaze paint) preferred on structures subject to handling damage (outer baffle)
 - NIR tailored black coatings such as Desoto Black are preferred for diffuse surfaces
 - ASAP analyses suggest specular black paint (Z302) leads to better PSTs, in some instances, than diffuse black paints
- Suitability of selected coatings to be verified via straylight model

COMPETITION OF MOITH /F

Internal Iris and Passive Cold Stop

P. Jelinsky

Total Rate 0.01842

Inner Baffle

Focal Plane

11

Cassegrain Baffle & Shutter

- Cassegrain stray light baffle effectively shadows inactive areas of focal plane.
- Shutter moved from internal pupil to Cassegrain focus
 - Allows PCS to extend without interruption to internal iris
- Baffle is warm, but not visible to detector pixels

- Redundant limited angle torque motor drives
- Magnetic resolvers and feedback loop in design
- Shutters open/close in <100ms

ASAP

- Breault Research Organization product
- Breault involved with stray light baffle design for Hubble
- Non-sequential raytrace program
- BRDF of dusty mirrors, and scattering surfaces
- Compute PST (Point Source Transmittance) = irradiance on focal plane divided by irradiance at entrance pupil.
- Need reality check before using this, or any analysis package

Case 1: single bounce baffle

- The value β - $\beta 0 = \sin(0)$ - $\sin(73)$ =0.96, and the corresponding BRDFs are:
 - BRDFZ302=0.001/sr
 - BRDFZ306=0.015/sr
- Area of the mirror is $0.88* \pi*12=2.76m2$
- The light arriving at the PM, therefore, should be:
 - $Pm=P0*BRDF*(2.76*cos(17°)/4.2^2)*cos(73°)$
 - -- Pm Z302=P0*0.001*(2.76*cos(17°)/4.2²)*cos(73°)=P0*4.4E-5
 - -- Pm Z306=P0*0.015*(2.76*cos(17°)/4.2²)*cos(73°)=P0*6.6E-4
- ASAP results:
 - Pm Z302=P0*2.4E-5
 - Pm Z306=P0*1.4E-4
- Conclusions: ASAP predicts low by a factor of 2-3

Case 2: Bercovitz Baffle

Bounce	β - β_0	Θ_0	BRDF _{Z302}	BRDF _{Z306}
1	0.37	60°	0.0013	0.025
2	0.22	30°	0.0030	0.018

The view factor of baffle vane 2 to vane 1 is 0.2 (roughly 20% of what is seen by baffle 1 is baffle 2). The power arriving at the back of baffle 2 therefore is: $PB2=P0*BRDF*(2\pi*0.2)*cos(30°)$

PB2Z302=P0*0.0014 PB2Z306=P0*0.027

The illuminated areas, as seen by the PM, are the back surfaces of the 2 baffles. The light reaching the PM may be approximated:

PM=PB2*BRDF*(2.76*cos(17°)/4.2²)*cos(73°) PMZ302=P0*(0.0014)(1.3E-4)=P0*1.8e-7 PMZ306=P0*(0.027)(1.3E-4)= P0*3.5E-6

ASAP Results PMZ302=P0*4E-8 PMZ306=P0*2.8E-6

Conclusion: ASAP predicts low by factor of 2-3

Dust contribution

- Directly viewed sky, scattered from mirrors into optical path
- Contributions of TM and FM were very low

PM & SM levels contribution

- Effects of dust on PM & SM, various levels
- Integrated with Jelinsky star & galaxy skymap (no Zodi)
 - Level 500: 3.5x10⁻³
 - Level 400: 1.4x10⁻³
 - Level 300: 5.9x10⁻⁴
 - Level 200: 3.6x10⁻⁴
 - Level 100: 3.2x10⁻⁴
- Edge of survey region

Scattering from baffles

• Stray Light increases at lower lattitudes, and when Earth shines in baffle

Secondary Mirror Spider

• Spider vanes angled inward to make invisible to focal plane

Integrated effects

- Test runs
 - **Z306 Baffle**
 - Level 500 contamination on mirrors
 - Regions of interest inside and outside survey region
 - Report photons/s/CCD pixel
 - Interesting locations (Thank you Pat Jelinsky)

location	RA	DEC	Photon rate
-			
North ecliptic pole	+270.0	+66.56	0.0059
South ecliptic pole	+90.0	-66.56	0.0106
SNAP field corner1	+250.39	+57.37	0.0032
SNAP field corner2	+248.64	+58.31	0.0029
SNAP field corner3	+240.57	+53.58	0.0020
SNAP field corner4	+242.06	+52.75	0.0021
Larger SNAP field corner1	+257.88	+57.03	0.0027
Larger SNAP field corner2	+240.05	+57.03	0.0029
Larger SNAP field corner3	+240.05	+55.01	0.0022
Larger SNAP field corner4	+257.88	+55.01	0.0025

Earthshine from L2

- Due to Baffle geometry and observation schedule, Earth occasionally "peeks" into baffle
- P. Jelinsky predicted that this is, worst case, equivalent to a -11th magnitude star (Moon is -6th magnitude)
 - 6th mag. Star: 2.7x10¹⁵ photons/s/m²
 - **Iin*PST*Apixel <0.001**
 - $-2.7 \times 10^{15} \text{*PST*} (10 \times 10^{-6})^2 < 0.001$
 - PST<3.7x10⁻⁹
 - Could be an issue during targeted observations, depending on season
- In LEO, Molniya or 3-day orbit, equivalent magnitude increases dramatically
- Sun must be blocked by 2 edges, and cannot be allowed to "see" inside baffle

Conclusions

- SNAP Telescope noise floor is in-field Zodiacal radiation
- Goal of stray light design: stray-light << Zodi
- Internal field stop and iris limit stray light
- First-order stray light paths identified, and mitigated when possible
- Analyses performed:
 - —Thermal emission (via reverse raytrace)
 - —Scattered stray light (ASAP, model available on request)
- Excursions into lower Ecliptic latitudes increases Zodi and starlight dramatically (widefield survey)
- In dark Ecliptic polar survey regions, this is ~23rd magnitude per square arcsec → within requirements
- In L2 halo orbit, Earth and Moon occasionally illuminate interior of stray light baffle → within requirements